Age-related defects in spatial memory are correlated with defects in the late phase of hippocampal long-term potentiation in vitro and are attenuated by drugs that enhance the cAMP signaling pathway.

نویسندگان

  • M E Bach
  • M Barad
  • H Son
  • M Zhuo
  • Y F Lu
  • R Shih
  • I Mansuy
  • R D Hawkins
  • E R Kandel
چکیده

To study the physiological and molecular mechanisms of age-related memory loss, we assessed spatial memory in C57BL/B6 mice from different age cohorts and then measured in vitro the late phase of hippocampal long-term potentiation (L-LTP). Most young mice acquired the spatial task, whereas only a minority of aged mice did. Aged mice not only made significantly more errors but also exhibited greater individual differences. Slices from the hippocampus of aged mice exhibited significantly reduced L-LTP, and this was significantly and negatively correlated with errors in memory. Because L-LTP depends on cAMP activation, we examined whether drugs that enhanced cAMP would attenuate the L-LTP and memory defects. Both dopamine D1/D5 receptor agonists, which are positively coupled to adenylyl cyclase, and a cAMP phosphodiesterase inhibitor ameliorated the physiological as well as the memory defects, consistent with the idea that a cAMP-protein kinase A-dependent signaling pathway is defective in age-related spatial memory loss.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P3: Mechanisms of TrkB-Mediated Hippocampal Long-Term Potentiation in Learning and Memory

Long-term potentiation (LTP) is a process that certain types of synaptic stimulation lead to a long-lasting enhancement in the strength of synaptic transmission. Studies in recent years indicate the importance of molecular pathways in the development of memory and learning. Tropomyosin receptor kinase B (TrkB) is a member of the neurotrophin receptor tyrosine kinase family, that its ligand is b...

متن کامل

Assessment of the effect of nitric oxide within hippocampal CA1 area on spatial learning and memory in morphine dependent rats

Introduction: There are evidences showing the role of nitric oxide in the opiate reward properties. The role of nitric oxide signaling pathway as an intracellular mechanism on augmentation of long term potentiation in hippocampal CA1 area of rats is also confirmed. It has been also reported that oral morphine dependence facilitates formation of spatial learning and memory via activation of N...

متن کامل

P19: Long-Term Potentiation

The term synaptic plasticity points to a series of persistent changes related to the activity of synapses. Long-term potentiation (LTP) is a reflection of synaptic plasticity that has an important role in learning and memory. LTP is a long-lasting increase of synaptic activity due to enhancement of excitatory synaptic transmission after a high-frequency train of electrical stimulations. Differe...

متن کامل

P18: Signaling Pathway in Long-Term Potentiation

Synaptic plasticity in the central nervous system (CNS) of mammals has been discussed for many years. Several forms of synaptic plasticity of mammal’s CNS have been identified, such as those that occur in long-term potentiation (LTP). Different types of LTP have been observed in distinctive areas of the CNS of mammals. The hippocampus is one of the most important areas in the CNS that pla...

متن کامل

P13: Potassium Channels and Long-Term Potentiation Formation

Long-term potentiation (LTP) is a form of activity-dependent plasticity that occurs during learning. Potassium channels are the most diverse group of all ion channels that related to synaptic plasticity. Small-conductance calcium-activated potassium channels (SKs) are found in hippocampal CA1 neurons and by inhibiting of postsynaptic potentials are involved in synaptic transmission impairment. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 96 9  شماره 

صفحات  -

تاریخ انتشار 1999